

Ежегодная международная научно-практическая конференция

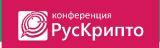
«РусКрипто'2022»

О возможностях нарушителя при атаках на некоторый класс протоколов аутентифицированной выработки общего ключа

Алексеев Е.К., к.ф.-м.н., начальник отдела криптографических исследований, КриптоПро Ахметзянова Л.Р., зам. начальника отдела криптографических исследований, КриптоПро Божко А.А., инженер-аналитик, КриптоПро Куценок К.О., инженер-аналитик, КриптоПро Кяжин С.Н., к.ф.-м.н., ведущий инженер-аналитик, КриптоПро

Моделирование в криптографии

Цель криптоанализа: предсказать будущее! (в части того, будет ли взломана криптосистема в ближайшие N лет)


Два этапа:

- 1) Моделирование исследуемой криптосистемы
- 2) Оценка стойкости в математической модели

Результаты в формальной модели абсолютны. Моделирование же основывается на экспертном опыте.

В работе – структурированный обзор с учетом актуальных практических примеров использования.

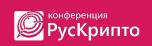
Что такое модель безопасности?

Wenbo Mao «Modern Cryptography: Theory and Practice»:

«Nowadays, however, cryptography has a modernized role in addition to keeping secrecy of information: ensuring fair play of "games" by a much enlarged population of "game players."»

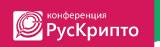
Три компоненты:

- Возможности нарушителя (тип атаки)
- Угрозы
- Ресурсы


Почему важно и сложно сделать правильную модель?

- Алексеев Е.К., Ахметзянова Л.Р., Карпунин Г.А., Смышляев С.В.
- «Что плохого можно сделать, неправильно используя криптоалгоритмы», Лекция на СТСгурt 2019.
- Алексеев Е.К., Ахметзянова Л.Р., Божко А.А., Грибоедова Е.С.
- «Теоретическая криптография в реальных условиях». Блог КриптоПро, 2019.
- Degabriele J.P., Paterson K.G., Watson G.J.
- «Provable Security in the Real World». IEEE Security and Privacy Magazine, 2011.
- Грибоедова Е.С., Царегородцев К.Д.
- «Еще раз о важности построения модели противника на примере протокола аутентификации 5G-AKA», ЧЕРЕЗ ПОЛ ЧАСА ЗДЕСЬ ЖЕ, НЕ ПРОПУСТИТЕ!

Какие АКЕ-протоколы рассматриваем?


AKE – «Authenticated Key Establishment»

<u>Рассматриваем только АКЕ-протоколы</u> <u>для 2 участников</u>

- Вход: 2 идентификатора А, В
- Выход участника А: $S_A = \{A, P_A\}, K_A, R_A$
- Выход участника В: $S_B = \{B, P_B\}, K_B, R_B$

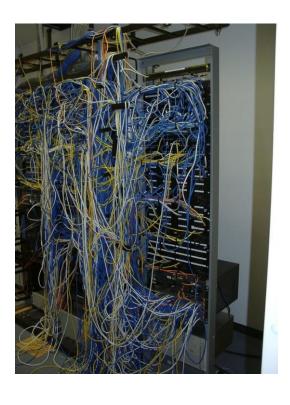
Цель протокола:

- $K_A = K_B выработанный ключ$
- $R_A \neq R_B$ роли (инициатор, респондер)
- $S_A = S_B$

Начальные условия для нарушителя

Нарушителю известны:

- идентификаторы, флаги ролей и ключевые наборы (кроме секретных ключей) всех участников сети
- для начатых сессий «место» отправленного сообщения в протокол

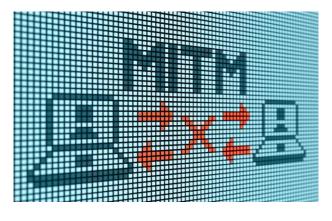

Что мы будем говорить о возможностях?

- Причины рассмотрения
- Примеры атак, использующих возможность:
 - Наименование протокола
 - [ААОО] ссылка на работу, в которой приведена атака (список литературы в конце презентации),
 - * обозначение авторской атаки

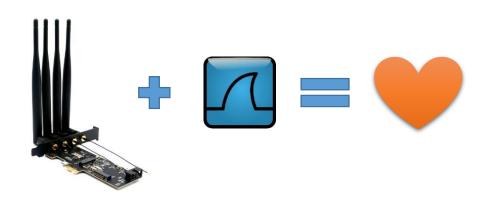
Типы возможностей нарушителя


Каналы связи

Регистрация узлов


Узлы сети

Активный нарушитель в канале



- TLS 1.3 PSK [DG19]
- HMQV [MU08]
- MTI/A0 [MQV95]

Пассивное прослушивание

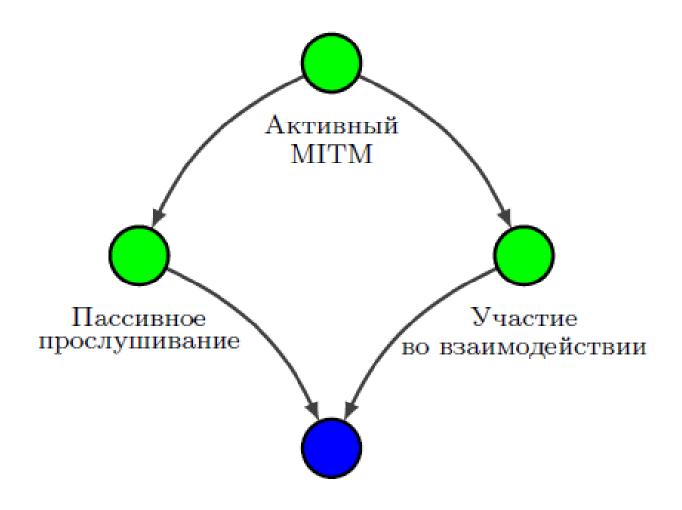
Причины рассмотрения:

- «Работает не трожь!» развертывание сети на основе уже существующего аутентифицированного канала (IKE+AH)
- Недостаточная квалификация нарушителя

- ISO 11770 (3-11) [CH14]
- Yacobi (MTI/A0) [B94]

Инициирование взаимодействия

Причины рассмотрения:


• Публичные сети

- HMQV [TC11]
- Yacobi (MTI/A0) [B94]
- MTI/A0 [*]

Каналы связи: краткий итог

Регистрация узлов

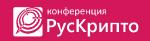
- Возможность быть легитимным узлом
- Динамический состав узлов сети
- Выбор ID
- Выбор аутентифицирующей информации
- Регистрация без проверки знания закрытого ключа
- Регистрация без проверки уникальности открытого ключа

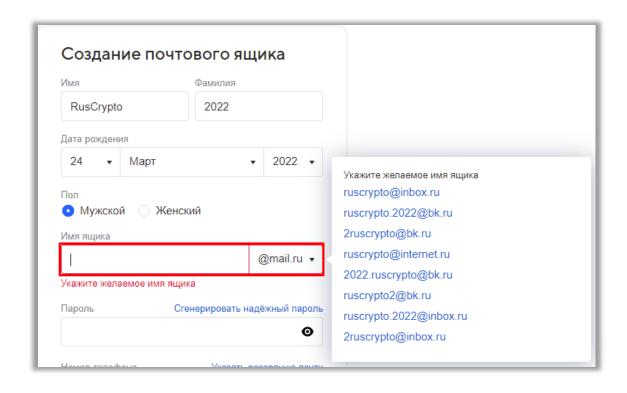

Возможность быть легитимным узлом

Причины рассмотрения:

- Внутренний нарушитель
- Возможность компрометации устройств

- Yacobi (MTI/A0) [B94]
- STS-MAC [MQV95, BM99]
- HMQV [MU08]


Динамический состав узлов


Причины рассмотрения:

- «Фича» масштабируемость сети
- Независимость системы регистрации (PKI)

- HMQV [MU08]
- STS-MAC [BM99]

Выбор ID

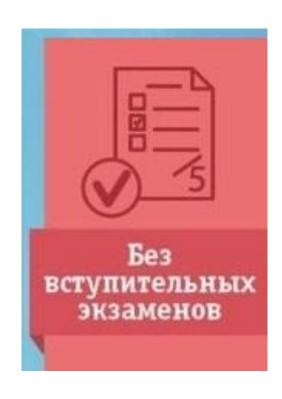
Причины рассмотрения:

• «Фича» системы регистрации

Примеры атак:

• HMQV – [MU08]

Выбор пары (ключевой)


Причины рассмотрения:

• Стандартная практика получения сертификатов в УЦ

- STS-ENC [MQV95]
- STS-MAC [BM99]
- HMQV [MU08]

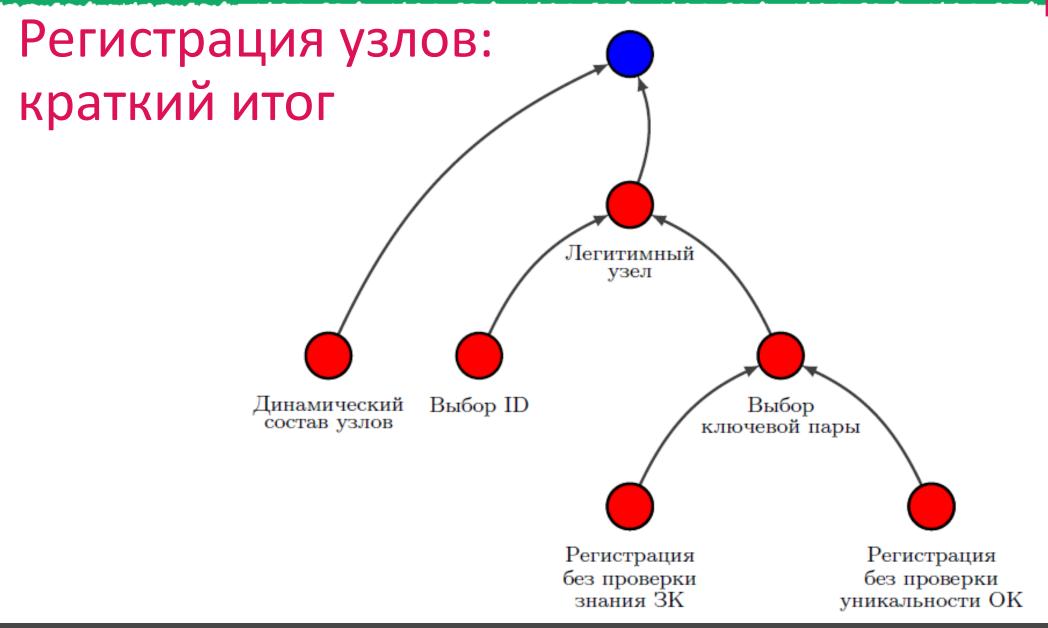

Регистрация без проверки знания закрытого ключа

Причины рассмотрения:

- Сложность внедрения криптографических протоколов в систему регистрации
- Желание не использовать закрытый ключ вне целевого АКЕ-протокола

- HMQV [MU08]
- STS-MAC [MQV95]
- MTI/A0 [MQV95]

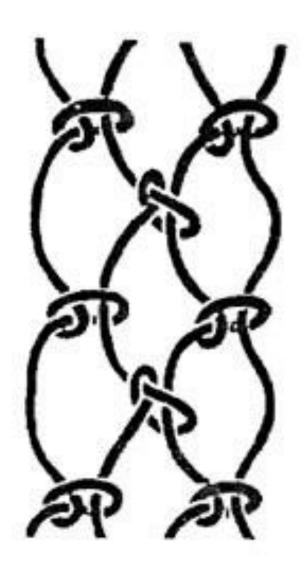
Регистрация без проверки уникальности открытого ключа

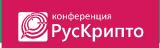


Причины рассмотрения:

- Использование внешней по отношению к сети системы регистрации
- Часто встречающаяся недоработка

- HMQV [MU08]
- STS-MAC [MQV95]
- STS-ENC [MQV95]





Узлы сети


- Возможности, не связанные с внутренним состоянием узлов
- Повтор и навязывание внутреннего состояния
- Вскрытие внутреннего состояния

Возможности, не связанные с внутр. состоянием

- Параллельные сессии
- Знание/незнание идентификатора ответчика в момент начала выполнения протокола (pre-/post-specified peer model)
- Роли аутентифицирующих параметров
- Навязывание взаимодействия

Параллельные сессии

Причины рассмотрения:

• Возможность работы нескольких процессов (потоков) в приложении

Примеры атак:

• TLS 1.3 PSK – [DG19]

obretu.ru

Отложенная идентификация ответчика (post-specified model)

Инициатору в начале неизвестен идентификатор респондера

Причины рассмотрения:

- Возможность реализации multicast
- Параллельное выполнение одинаковых функций несколькими узлами сети

- HMQV [MU08]
- MTI/A0 [*]

Роли аутентифицирующих параметров

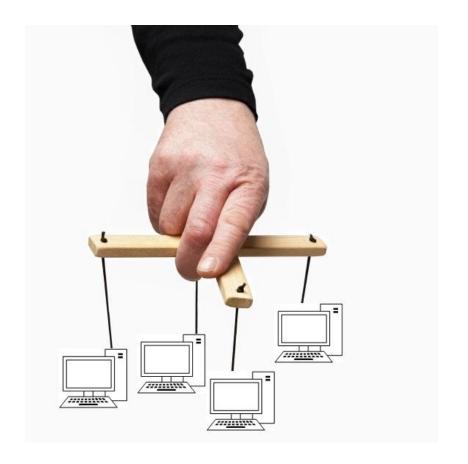
Одинаковые ключи для ролей инициатора и респондера


Причины рассмотрения:

- «Выпуск новых ключей это дорого»
- «Это же в 2 раза больше ключевой информации хранить»

Примеры атак:

• TLS 1.3 PSK – [DG19]



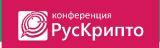
Навязывание взаимодействия

Причины рассмотрения:

• Желание учесть все сценарии влияния нарушителя на пользователя

- HMQV [TC11]
- TLS 1.2 [RY10]
- MTI/A0 [*]

Внутреннее состояние узлов



Долговременные секреты

Промежуточные значения

Сесссионный ключ


Вскрытие внутреннего состояния

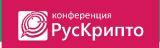
Причины рассмотрения:

- Небезопасное использование (swap и hibernate-файлы)
- Небезопасное хранение
- Плохая (предсказуемая) случайность
- Использование сессионных ключей в нестойких протоколах защиты канала связи
- Атаки по побочным каналам



Вскрытие внутреннего состояния

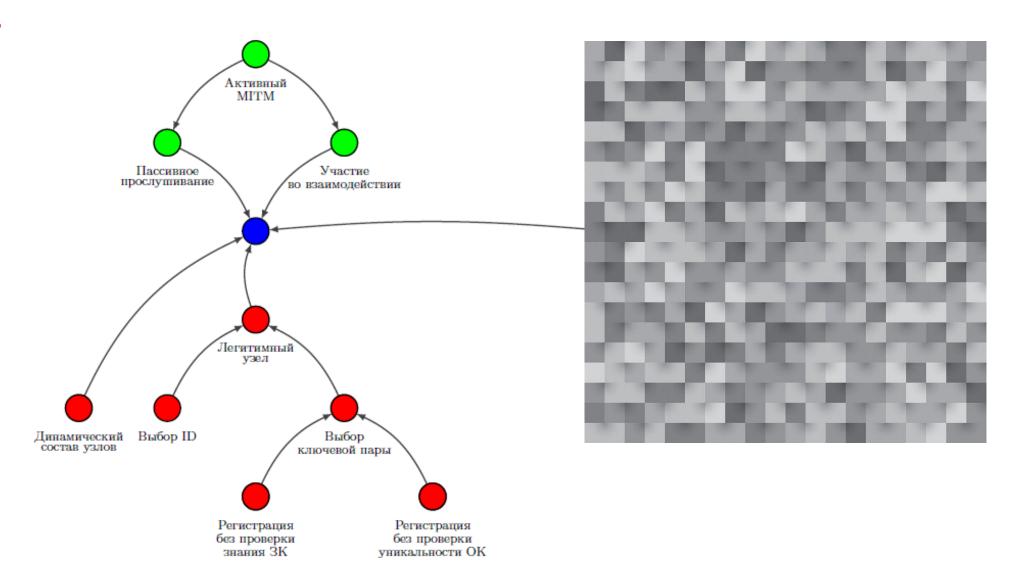
			Промежуточные значение					
	Долговременные		Предвычисляемые		Вычисляемые		Сессионные ключи	
	До	После	До	После	До	После	До	После
Открытые	Всегда известны		HMQV-C [SS17]	В канале	**	В канале	Не рассматривается	
Закрытые	HMQV [TC11]	ISO 11770 [CH14]	HMQV [TC11]	DHKE [K05]	Naxos [C08]	HMQV [*]	Не применимо	Yacobi [B94]



Повтор и навязывание внутреннего состояния

Причины рассмотрения:

- Повторение случайности при копировании виртуальных машин
- Слабодоверенное окружение
- Использование недоверенного УЦ
- Небезопасное хранение


Повтор и навязывание внутреннего состояния

			Промежуточные значения					
	Долговременные		Предвычи	исляемые	Вычисляемые			
	Повтор	Навязывание	Повтор	Навязывание	Повтор	Навязывание		
Открытые	Не рассма	атривается	ISO 9798 (mod.) [K03]	***	**	**		
Закрытые	MTI/A0 [*]	**	ISO 9798 [K03]	**	**	**		

Для протоколов подписи рассматривается в [AABS21]


Итог

Все ли возможности рассмотрены?

- Появление оракулов из-за использования долговременного ключа в других протоколах («атаки с выбранным протоколом»)
- Возможность взлома базовых примитивов
- Возможности, связанные с некорректной реализацией (EAP-PSK)
- Навязывание несогласованной ключей пары до/после регистрации легитимного узла


Что дальше?

• Более подробную версию доклада планируется представить на семинаре «Математические методы криптографического анализа» ВМК МГУ (подписывайтесь на рассылку и следите за анонсами: mmca2013@mail.ru)

• А что с угрозами?

«Defining Trivial Attacks for Security Protocols is Not Trivial»(ePrint Archive 2017/818)

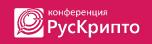
Контактная информация

Электронная почта:

alekseev@cryptopro.ru

Сайт:

www.cryptopro.ru


Список литературы

- [AABS21] Алексеев Е.К., Ахметзянова Л.Р., Божко А.А., Смышляев С.В. Безопасная реализация электронной подписи с использованием слабодоверенного вычислителя // Математические вопросы криптографии, 12:4, 5--23. 2021.
- [DG19] Drucker N., Gueron S. Selfie: reflections on TLS 1.3 with PSK // IACR Cryptology ePrint Archive, 2019/347.
- [SS17] Seye P., Sarr A. Enhanced Modelling of Authenticated Key Exchange Security // Security and Trust Management, pp. 36--52, 2017.
- [CH14] Cremers C., Horvat M. Improving the ISO/IEC 11770 Standard for Key Management Techniques // Lecture Notes in Computer Science, 8893: 215--235. 2014.
- [TC11] Tang Q., Chen L. Extended KCI attack against two-party key establishment protocols // Information Processing Letters. 111: 15, 744--747. 2011.
- [RY10] Ristenpart T., Yilek S. When Good Randomness Goes Bad: Virtual Machine Reset Vulnerabilities and Hedging Deployed Cryptography // Proceedings of Network and Distributed Security Symposium. 2010.
- [MU08] Menezes A., Ustaoglu B. Comparing the pre- and post-specified peer models for key agreement // Lecture Notes in Computer Science, 5107: 53--68. 2008.

Список литературы

- [CO8] Cremers C. Session-state Reveal is stronger than Ephemeral Key Reveal: Attacking the NAXOS Authenticated Key Exchange protocol // Lecture Notes in Computer Science, 5536: 20--33. 2009.
- [K05] Krawczyk H. HMQV: A High-Performance Secure Diffie-Hellman Protocol // Lecture Notes in Computer Science, 3621: 546--566. 2005.
- [K03] Krawczyk H. SIGMA: The 'SIGn-and-MAc' Approach to Authenticated Diffie-Hellman and Its Use in the IKE Protocols // Lecture Notes in Computer Science, 2729: 400--425. 2003.
- [BM99] Blake-Wilson S., Menezes A. Unknown Key-Share Attacks on the Station-to-Station (STS) Protocol // Lecture Notes in Computer Science. 1560: 154--170. 1999.
- [MQV95] Menezes A.J., Qu M., Vanstone S.A. Some new key agreement protocols providing implicit authentication // Workshop on Selected Areas in Cryptography (SAC'95), pp. 22--32, 1995.
- [B94] Burmester M. On the risk of opening distributed keys // Lecture Notes in Computer Science. 839: 308--317. 1994.

Что такое АКЕ-протокол?

В общем случае у каждого участника при выполнении протокола имеется:

- *ID* идентификатор участника
- f_{l}, f_{R} флаги ролей, которые может исполнять участник
- Cred, ключевой набор для исполнения роли инициатора
 - $Cred_{l}^{0} = (pk_{l}^{0}, sk_{l}^{0})$ ключевая пара участника в роли инициатора
 - $Cred_i^j = (ID^j, pk_i^j, k_i^j)$ идентификатор, открытый ключ, симметричный ключ, используемый для взаимодействия с j-м участником в роли инициатора, $j \in \{1,...,n\}$
- Cred_R ключевой набор для исполнения роли респондера
 - $Cred_R^{\ 0} = (pk_R^{\ 0}, sk_R^{\ 0})$ ключевая пара участника в роли респондера
 - $Cred_R^{\ j} = (ID^j, pk_R^{\ j}, k_R^{\ j})$ идентификатор, открытый ключ, симметричный ключ, используемый для взаимодействия с j-м участником в роли респондера, $j \in \{1,...,n\}$